Trigonometrik Fonksiyonların Periyodu

📅 14 Ağustos 2021|03 Ekim 2022
Trigonometrik Fonksiyonların Periyodu

Konu Özeti

Belirli aralıklarda tekrarlanan olaylar için genellikle periyot veya periyodik kavramı kullanılır. Biz de bu konuda eşit aralıklarla tekrarlanan fonksiyonları, diğer adıyla periyodik fonksiyonları inceleyeceğiz. Daha sonrasında biraz daha özele inip trigonometrik periyodik fonksiyonları inceleyeceğiz.

Bu konuda
  • Bir fonksiyonun periyodik olup olmadığını
  • Bir fonksiyonun periyodunu bulmayı
öğreneceksiniz.
Instagram Logo
Bikifi Instagram'da

Periyodik Fonksiyonlar

şartıyla fonksiyonundaki eşitlik sağlanıyorsa fonksiyonuna periyodik fonksiyon, T gerçek sayısına ise fonksiyonun periyodu denir. Bu eşitlikte T sayılarından içinden en küçük pozitif sayıya fonksiyonun esas periyodu denir.

Daha iyi anlamak için örnek verecek olursak fonksiyonlarını inceleyelim. Her tam sayısı için 2π(360°) eklenecek veya çıkarılacağı için sinüs veya kosinüs fonksiyonlarının sonucunda bir değişiklik olmayacaktır. Bunun sonucunda aşağıda verilen grafiklerde görüldüğü gibi sürekli tekrar eden bir fonksiyona ulaşacağız. Sinüs ve kosinüs fonksiyonları için periyodik fonksiyon diyebiliriz ve periyodunu bulmak istersek T=k.2π eşitliğinde k=1 için periyodumuz T=2π olacaktır.

y=sinx ve y=cosx Grafikleri

Yukarıdaki tanjant ve kotanjant fonksiyonlarından tanımsız yapan değerler çıkarıldığında iki fonksiyon için de her π(180°) eklendiğinde veya çıkarıldığında yine aynı sonucu vereceğini görüyoruz. Bu durumda tanjant ve kotanjant fonksiyonlarına T=k.π eşitliğinde k=1 için T=π periyoduna sahip birer periyodik fonksiyon diyebiliriz. Aşağıda tanjant ve kotanjant fonksiyonlarına ait

y=tanx ve y=cotx Grafikleri

f(x)=p.sin(ax+b)+c veya g(x)=p.cos(ax+b)+c Fonksiyonlarının Periyotları

şartıyla f(x)=p.sin(ax+b)+c ve g(x)=p.cos(ax+b)+c fonksiyonlarının periyodik olup olmadığını anlamak için f(x)=f(x+T) eşitliğinde T periyodunu bulmamız gerekmektedir.

Bu durumda f(x)=p.sin(ax+b)+c ve g(x)=p.cos(ax+b)+c fonksiyonları periyodu olan periyodik bir fonksiyondur.

f(x)=p.tan(ax+b)+c veya g(x)=p.cot(ax+b)+c Fonksiyonlarının Periyotları

Yukarıda yaptığımız gibi yine periyodik fonksiyon denklemini kullanarak bu sefer tanjant ve kotanjantın periyodik fonksiyon olup olmadığını inceleyeceğiz.

şartıyla f(x)=p.tan(ax+b)+c ve g(x)=p.cot(ax+b)+c fonksiyonlarından birini f(x)=f(x+T) eşitliğine sokalım.

Bulduğumuz sonuca göre tanjant ve kotanjant fonksiyonları da birer periyodik fonksiyonlardır ve periyodu ‘dir.

Bu yazıda bulunan terimler ayrıca anlatılmamıştır. Bu yazıdaki bir terimin ayrıca anlatılmasını istiyorsanız aşağıdaki yorum kısmından bize ulaşabilirsiniz.
Benzer İçerikler
Trigonometrik Fonksiyonlar: 90 Derece ve Katları Şeklindeki Açıların Trigonometrik Oranları
Matematik

Trigonometrik Fonksiyonlar: 90 Derece ve Katları Şeklindeki Açıların Trigonometrik Oranları

İçeriğe Git>
Toplam Fark Formülleri
Matematik

Toplam Fark Formülleri

İçeriğe Git>
Trigonometrik Denklemler
Matematik

Trigonometrik Denklemler

İçeriğe Git>
Trigonometrik Fonksiyonlar
Matematik

Trigonometrik Fonksiyonlar

İçeriğe Git>
Yarım Açı Formülleri
Matematik

Yarım Açı Formülleri

İçeriğe Git>
Kosinüs Teoremi
Matematik

Kosinüs Teoremi

İçeriğe Git>
Copyright © 2024 Bikifi
Star Logo
tiktok Logo
Pinterest Logo
Instagram Logo
Twitter Logo