Açık Önermeler ve İspat Kavramı

📅 21 Eylül 2021|19 Aralık 2021
Açık Önermeler ve İspat Kavramı

Konu Özeti

Önermeler sabit ifadelerden oluşabileceği gibi herhangi bir değişkene bağlı olarak da oluşturulabilir. Değişkenler kullanılarak oluşturulan önermelerde "her" ve "bazı" gibi niceleyiciler kullanılır.

Bu konuda
  • Değişken kullanarak önermeler oluşturmayı
  • Açık önermelerinin olumsuzunu almayı
  • Tanım, aksiyom, teorem ve ispat kavramlarını
öğreneceksiniz.
Instagram Logo
Bikifi Instagram'da

“Her” ve “Bazı” Niceleyicileri

“Her” ve “Bazı” niceleyicileri matematiksel bir ifadede (veya soruda) tanım yapılırken çok sık kullanılmaktadır. Örneğin, “her x bir tamsayı olmak üzere…” şeklinde başlayan sorularda bu niceleyiciler kullanılmaktadır.

“Her” Niceleyicisi

“Her” niceleyicisi, bütün, tamamı anlamına gelen, önüne geldiği elemanların (değişkenlerin vb.) tamamını anlattığı için evrensel niceleyici olarak isimlendirilir. “Her” niceleyicisi sembolüyle gösterilir.

“Bazı” Niceleyicisi

“Bazı” niceleyicisi, en az bir anlamına gelir. “Bazı” niceleyicisine varlıksal niceleyici denir ve sembolü ile gösterilir.

Açık Önerme

İçinde en az bir değişken bulunan (örneğin x değişkeni) ve bu değişkenlere verilen değerlerle doğru ya da yanlış belirlenen önermelere açık önerme denir.

Açık önermeyi sağlayan değerler kümesine, açık önermenin doğruluk kümesi (çözüm kümesi) denir. Yani bir açık önermeyi doğrulayan elemanların kümesine o açık önermenin doğruluk kümesi denir. Kısaca, bir x sayısı p(α) açık önermesinin doğruluk kümesinin;

  • elemanıysa =>
  • elemanı değilse

Açık Önermenin Değili (Olumsuzu)

Açık önermelerde kullanılan “Her” niceleyicisinin değili “Bazı” niceleyicisi ve “Bazı” niceleyicisinin değili de “Her” niceleyicisidir.

Mantıkta Kullanılan Bazı İfadelerin Olumsuzları

Sembol
Değili

Tanım, Aksiyom, Teorem ve İspat

Tanım

Anlamı bilinen sözcüklerle birlikte, tanımlı veya tanımsız terimler kullanılarak herhangi bir yeni terimin özelliklerini belirtmeye tanımlama denir.

İyi bir tanımlama açık ve anlaşılır olmalıdır. Ayrıca tanım, tanımlanan terimin belirtilmesi gereken bütün özelliklerini kapsamalı ve başka özellikleri kapsamayacak biçimde kesin olmalıdır.

Aksiyom

Doğruluğu ispata gerek duymaksızın kabul edilen önermelere aksiyom denir. Örneğin “iki noktadan bir doğru geçer” ifadesi aksiyomdur.

Teorem

Doğruluğunun ispatla kanıtlanması gereken önermelere teorem denir. Örneğin “bir üçgenin dış açılarının ölçüleri toplamı dir” önermesi doğrudan kabul edilebilecek bir önerme değildir. Bu yüzden teoremdir.

İspat

Aksiyom, kural, sonuç veya tanımları kullanarak bir önermenin doğru ya da yanlış olduğunun gösterilmesine ispat denir.

12 Ders Saati📂 9. Sınıf Matematik
Bu yazıda bulunan terimler ayrıca anlatılmamıştır. Bu yazıdaki bir terimin ayrıca anlatılmasını istiyorsanız aşağıdaki yorum kısmından bize ulaşabilirsiniz.
Sistememizde bu yazıda bahsi geçen kişilere ait bir biyografi bulunamamıştır.
Benzer İçerikler
Bileşik Önerme
Matematik

Bileşik Önerme

İçeriğe Git>
Koşullu Önerme
Matematik

Koşullu Önerme

İçeriğe Git>
Mantığa Giriş: Önerme
Matematik

Mantığa Giriş: Önerme

İçeriğe Git>
Temel Kavramlar: Sayılar
Matematik

Temel Kavramlar: Sayılar

İçeriğe Git>
Dik Prizmalar
Matematik

Dik Prizmalar

İçeriğe Git>
Trigonometrik Denklemler
Matematik

Trigonometrik Denklemler

İçeriğe Git>
Copyright © 2024 Bikifi
Star Logo
tiktok Logo
Pinterest Logo
Instagram Logo
Twitter Logo